量子低密度奇偶校验(QLDPC)码在量子纠错(QEC)领域实现了纠错能力与实现复杂度之间的实用平衡。本文提出了一种基于二元矩阵的代数构造方法,用于设计经典和量子LDPC码。该方法首先生成Tanner图围长为6的经典二进制准二元LDPC码,随后将其扩展至Calderbank-Shor-Steane(CSS)框架。在此框架下,研究人员构建了两个满足兼容性条件的校验矩阵,该条件针对最新提出的CAMEL-ensemble四元置信传播解码器而设计。这种兼容性条件确保了所有不可避免的4长度环路都被集中到单个变量节点中,从而通过对该变量节点进行抽选来减轻其有害影响。
作者单位:
VIP可见
提交arXiv:
2026-01-13 15:11