混合维度希尔伯特空间的纠错码与绝对最大纠缠态
量子计算面临的一个主要难题是实现容错计算,即保护信息免受环境干扰的影响。稳定子码(Stabiliser codes)被提出作为在局域维度固定的希尔伯特空间(即形式为(ℂ^D)^⊗n的空间)中存储或执行计算时保护信息的手段。当D为素数幂时,研究人员可基于有限域构建稳定子码[20],从而利用更深刻的数学结构来开发这类编码。然而,子系统并不必然需要具有相同的局域维度——该团队在本文中提出了一种适用于混合维度希尔伯特空间(即形式为ℂ^D1⊗⋯⊗ℂ^Dn的空间)的稳定子形式体系。 更广泛地,该研究团队定义并证明了混合维度希尔伯特空间中量子纠错码的Singleton界。研究人员重新定义了这类希尔伯特空间的纠缠度量,并参照文献[19]将绝对最大纠缠态定义为使该纠缠度量最大化的态。该工作还给出了若干先前未知存在绝对最大纠缠态的空间维度下的具体实例。
量科快讯
3 小时前
21 小时前
22 小时前
1 天前
1 天前
1 天前



