广义熵不确定关系与史瓦西黑洞中的非经典性

测不准原理构成了量子理论的基本支柱,代表了量子力学区别于经典物理学最显著的特征之一。该研究首次针对多体系统中的任意多重测量,提出了一种新颖的广义熵不确定性关系(EUR),并严格推导出比现有公式显著更紧致的边界。具体而言,研究人员在史瓦西黑洞背景下讨论了所提出的EUR,证明了所推导边界的优越紧致性。该工作进一步阐明了弯曲时空中多体量子相干性与纠缠的动态演化过程。一个特别值得注意的发现揭示了任意N体格林伯格-霍恩-塞林格型(GHZ型)态中,量子纠缠与l1范数相干性之间的精确等价关系。此外,研究发现随着霍金温度升高,量子相干性显著减弱,测量不确定性则增至稳定最大值。这些发现为深入理解黑洞中的非经典性与量子资源提供了重要见解。

作者单位: VIP可见
页数/图表: 登录可见
提交arXiv: 2026-02-12 02:57

量科快讯