在部分信息和有限测量统计下界定多体特性

计算多体量子系统性质的边界条件至关重要,因为这能指导研究人员理解涌现的量子现象,并补充通过估计方法获得的认知。近期发展的半定规划方法,能够从有限次测量中易于获取但信息不完整的可观测量推导出概率性边界。本研究通过采用矩矩阵松弛技术,使这些方法在量子比特数量上具备可扩展性。在介绍通用形式体系后,该团队展示了如何结合系统的特定知识(如作为给定哈密顿量的基态、具有特定对称性或是给定林布拉德算符的稳态)来调整该方法。该工作提出了一种可扩展的实际认证方案,该方案结合了半定规划松弛技术和实验测量数据——这些数据不可避免地包含散粒噪声。
作者所在地: VIP可见
作者单位: VIP可见
页数/图表: 登录可见
提交arXiv: 2026-01-15 14:00

量科快讯