有限温度下的理想玻色子粒子-反粒子系统

该研究团队在标量场模型框架下,研究了由正反粒子组成的理想玻色系统在有限温度下的热力学性质。假设系统中存在正反粒子对产生现象,但系统同时满足严格电荷(同位旋)守恒。 为实现这一约束条件,研究人员首先在巨正则系综中考察系统,随后通过勒让德变换转为正则系综。该方法构建了一个形式自洽的方案,将微观层面的化学势纳入正则系综框架。为确保电荷(同位旋NI)的严格守恒,该工作进一步在扩展正则系综中分析系统的热力学性质——其中化学势成为温度与守恒电荷的热力学函数。研究表明:当温度降至临界温度Tc时,系统会经历向玻色-爱因斯坦凝聚态的二阶相变,但仅当守恒电荷有限(NI=const≠0)时成立。在正反粒子系统中,凝聚仅形成于具有主导粒子数密度的组分内,该组分决定了过剩电荷。该团队证明:T=0时基态的对称性破缺源于与玻色-爱因斯坦凝聚形成相关的一阶相变。虽然相变涉及对称性破缺,但从严格场论意义上说并非自发产生,而是由外部粒子注入所诱导。研究还简要讨论了高能核碰撞中产生π介子的玻色-爱因斯坦凝聚潜在实验信号。

量科快讯