基于块编码和量子奇异值变换的有限时域LQG控制量子求解框架

该研究团队提出了一种用于解决有限时域离散时间线性二次高斯(LQG)控制问题的量子算法,该算法在存在随机干扰和噪声的情况下整合了最优控制与状态估计。传统LQG方法需要求解后向Riccati递推和前向卡尔曼滤波,二者均需执行计算代价高昂的矩阵运算,总体时间复杂度为𝒪(Tn³),其中n为系统维度,T为时域长度。虽然针对中小型系统存在高效的经典求解器,但其计算复杂度会随系统维度快速增加。为解决这一问题,该团队利用量子线性代数原语重构了完整LQG流程,包括采用块编码矩阵表示及量子奇异值变换(QSVT)技术进行矩阵求逆和乘法运算。研究人员对每个算法组件的复杂度进行了形式化分析,在矩阵条件数和编码精度的标准假设下,量子LQG算法的总运行时间与系统维度n呈多对数关系,与时域T呈线性关系,相较经典方法实现了渐进量子加速。

量科快讯