不完美马约拉纳粒子的绝热非阿贝尔编织
准粒子交换(或称编织)所展现的非平凡结果,通常被视为具有非阿贝尔激发的拓扑相(如马约拉纳束缚态)的决定性证据。然而,在存在无序性和平滑势场变化的有限系统中,马约拉纳束缚态存在固有缺陷——它们无法在空间上完全隔离,且在不同程度上会与传统费米子表现出相似性。该研究工作通过系统分析理想马约拉纳束缚态、常规费米子及其中间态系的编织特性,提出了一种能够补偿非理想马约拉纳束缚态在操作过程中产生的基态简并分裂的方法。研究结果表明,尽管编织结果取决于马约拉纳束缚态的隔离程度,但只要不处于完美费米子极限情况,其非阿贝尔特性仍能保持鲁棒性。该方案可推广至各类具有非阿贝尔激发的实验平台,包括基于量子点的最小型Kitaev链体系。
