随时间变化移动边界约束下的伪谐振子量子动力学
该研究团队提出了在移动边界条件下,针对任意角动量态的受限伪谐波势薛定谔方程的解析解。研究表明,探测该问题的关键参数是依赖于Ermakov方程解的核间距比率。随时间变化的海森堡不确定性乘积最小值始终大于最小不确定性乘积ℏ/2。研究人员通过闭合形式解析推导出随时间变化的平均能量,并定义了相应的平均作用力与平均压强。此外,还获得了六种选定双原子分子(CO、NO、ScH、CH、H2、N2)在两种不同时域的态间时间关联函数,发现其与核间距比率相关。该工作定义了受限量子系统中分子的随时间变化存活概率及平均寿命,给出了量子相似性度量、相异性及量子相似性指数的表达式,其中相似性指数针对分子对进行计算。所得结果尽可能与现有文献进行了对比。据该团队所知,这是首份关于移动边界条件下非谐波中心势的详细研究报告。
